设 $|f|$ 在 $\bbR$ 上一致连续, $f$ 连续. 试证: $f$ 一致连续.
证明: 由 $|f|$ 在 $\bbR$ 上一致连续知 $$\bex \forall\ \ve>0,\ \exists\ \delta>0,\st |x-y|<\delta\ra ||f(x)|-|f(y)||<\frac{\ve}{2}. \eex$$ 若 $f(x),f(y)$ 同号, 则 $$\bex |f(x)-f(y)|=||f(x)|-|f(y)||<\frac{\ve}{2}<\ve. \eex$$ 否则, 由连续函数介值定理, $$\bex \exists\ \xi\mbox{ 在 }x,y\mbox{ 之间},\st f(\xi)=0, \eex$$ 如此, $$\beex \bea |f(x)-f(y)|&\leq |f(x)-f(\xi)|+|f(y)-f(\xi)|\\ &=||f(x)|-|f(\xi)||+||f(y)|-|f(\xi)||\\ &<\frac{\ve}{2}+\frac{\ve}{2}=\ve. \eea \eeex$$